Stability of a Chebychev pseudospectral solution of the wave equation with absorbing boundaries

نویسنده

  • R. Renaut
چکیده

Stability of the pseudospectral Chebychev collocation solution of the two-dimensional acoustic wave problem with absorbing boundary conditions is investigated. The continuous one-dimensional problem with one absorbing boundary and one Dirichlet boundary has previously been shown to be far from normal. Consequently, the spectrum of that problem says little about the stability behavior of the solution. Our analysis proves that the discrete formulation with Dirichlet boundaries at all boundaries is near normal and hence the formulation with absorbing boundaries at all boundaries, either for one-dimensional or two-dimensional wave propagation, is not far from normal. The near-normality follows from the near-normality of the second-order derivative pseudospectral differential operator. Further, the nearness to normality is independent of the boundary discretization. Stability limits on the timestep are, however, dependent on the boundary operator, with an explicit Euler method having the most restrictive condition. The Crank-Nicolson implementation has a stability limit the same as the Dirichlet formulation. Furthermore, in this case the restriction scales by l/v/-2 in moving from one dimension to two dimensions, exactly as in the central finite difference approximation. Numerical results confirm the predicted values on allowable timesteps obtained from a spectral analysis, for both Chebychev-and modified-Chebychev-implementations. We conclude that the spectrum of the evolution operator is informative for predicting the behavior of the numerical solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pseudospectral Chebychev Method for the 2D Wave Equation with Domain Stretching and Absorbing Boundary Conditions

therefore the damping layer has to be large enough to prevent reentrant waves at the physical boundary. Hence In this paper we develop a method for the simulation of wave propagation on artificially bounded domains. The acoustic wave the approach is not only costly in terms of memory requireequation is solved at all points away from the boundaries by a ments but also it is not very flexible. In...

متن کامل

A note on stability of pseudospectral methods for wave propagation

In this paper we deal with the e/ects on stability of subtle di/erences in formulations of pseudospectral methods for solution of the acoustic wave equation. We suppose that spatial derivatives are approximated by Chebyshev pseudospectral discretizations. Through reformulation of the equations as 4rst order hyperbolic systems any appropriate ordinary di/erential equation solver can be used to i...

متن کامل

Stability of wide-angle absorbing boundary conditions for the wave equation

Numerical solution of the two-dimensional wave equation requires mapping from a physical domain without boundaries to a computational domain with artificial boundaries. For realistic solutions, the artificial boundaries should cause waves to pass directly through and thus mimic total absorption of energy. An artificial boundary which propagates waves in one direction only is derived from approx...

متن کامل

Radial basis function collocation method for decoupled fractional Laplacian wave equations

Decoupled fractional Laplacian wave equation can describe the seismic wave propagation in attenuating media. Fourier pseudospectral implementations, which solve the equation in spatial frequency domain, are the only existing methods for solving the equation. For the earth media with curved boundaries, the pseudospectral methods could be less attractive to handle the irregular computational doma...

متن کامل

Chebyshev pseudospectral method for wave equation with absorbing boundary conditions that does not use a first order hyperbolic system

The analysis and solution of wave equations with absorbing boundary conditions by using a related first order hyperbolic system has become increasingly popular in recent years. At variance with several methods which rely on this transformation, we propose an alternative method in which such hyperbolic system is not used. The method consists of approximation of spatial derivatives by the Chebysh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997